The Effect of Solids Concentration on Performance of a Biofloc System for Tilapia

John A. Hargreaves

Wai-Hing Wong

Baton Rouge, LA

Wisconsin Department of Natural Resources

Madison, WI

Overview:

- system configuration and operation
- experimental protocol
- basic system performance data
- main effects on water quality
 - solids concentration
 - feed loading
- fish performance data
- system collapse

 each tank assigned one of eight nominal settleable solids concentrations

- each tank assigned one of eight nominal settleable solids concentrations
- settleable solids measured daily

- each tank assigned one of eight nominal settleable solids concentrations
- settleable solids measured daily
- if settleable solids exceeded target, then solids settling/recirculating columns were operated

V = 80 L

Q = 3 L/min

HRT = 27 min

- tilapia (41 g) stocked at 3.0 kg/m³
- fed 32%-protein feed 1 3x daily
- daily feeding rate increased weekly by 25 g/m³

- tilapia (41 g) stocked at 3.0 kg/m³
- fed 32%-protein feed 1 3x daily
- daily feeding rate increased weekly by 25 g/m³
- alkalinity maintained >100 mg/L w/ NaHCO₃
- water quality measured regularly

Water quality measurements:

- Daily
 - settleable solids
 - water temperature
 - dissolved oxygen
- Periodically
 - $-NO_3$

- Weekly
 - **TSS**
 - TAN, NO_2
 - carbon dioxide, alkalinity, pH
 - water respiration
- At termination
 - solids partition
 - COD
 - metals

Overview:

- system configuration and operation
- experimental protocol
- basic system performance data

Overview:

- system configuration and operation
- experimental protocol
- basic system performance data
- main effects on water quality
 - solids concentration
 - feed loading

Two main effects:

- settleable solids concentration
 - "fixed" by design, but fluctuated in reality
 - -variable degree of control through time
- loading (feeding) rate

General trends with solids:

- Positive relationship
 - nitrate accumulation (nitrification) rate
 - water respiration rate
 - carbon dioxide
- Negative relationship
 - <u> pH</u>
 - **DO**
 - $-NH_3$
- No trend
 - TAN
 - $-NO_2$

Treatment goal

SRT range (d)

removal of soluble BOD in wastewater

1-2

develop flocculent biomass for treating domestic wastewater

3-5

provide complete nitrification

3 - 18

this study

17-42

stabilization of activated sludge 20 - 40

General trends with loading:

- Positive relationship
 - water respiration rate
 - carbon dioxide
 - TAN
 - $-NH_3$
 - $-NO_2$

Overview:

- system configuration and operation
- experimental protocol
- basic system performance data
- main effects on water quality
 - solids concentration
 - -feed loading
- fish performance data

	<u>Average</u>	<u>CV (%)</u>
initial wt (g)	41	2.4
final wt (g)	141	9.2
arouth (a/d)	1.03	12.6
growth (g/d)	1133	1213
specific growth (%/d)	1.27	7.1
FCR	1.83	12.0
survival (%)	94.7 *	4.9
final density (kg/m³)	9.8	9.2

After 11 weeks:

Fish

- stopped eating
- apparent signs of respiratory distress
- all fish in one tank died (15 mL/L)
- affected fish in all tanks

Conditions

- feeding rate: 275 g/m³ per d
- cumulative feed: 12 kg/m³
- cumulative feed burden: 130 kg/m³

After 11 weeks:

- Our response
 - reduced then ceased feeding
 - measured serum osmolality
 - measured hematocrit
 - measured metal concentrations
 - exchanged 50% of tank volume

Potential hypotheses for fish stress:

- metal toxicity related to low [Ca²⁺]
 - $-Ca^{2+}$: 1 5 mg/L (Ca hardness = 12.5 mg/L)
 - synergistic or collective effect among metals
- nitrate toxicity
 - chronic exposure
 - ~400 mg/L as N
- unknown factor associated with DOM
 - -COD: 300 500 mg/L
 - VDS: ~1000 mg/L

- system functional across a wide range of solids concentrations (200 – 1000 mg/L)
 - "best": 300 500 mg/L TSS, 25 50 mL/L

- system functional across a wide range of solids concentrations (200 – 1000 mg/L)
- system "collapse" at 275 g/m³ per d
 - sustainable max. rate ~200 g/m³ per d

- system functional across a wide range of solids concentrations (200 – 1000 mg/L)
- system "collapse" at 275 g/m³ per d
- process instability
 - difficult to control solids concentration when foam develops (pin floc)
 - need foam fractionators

- system functional across a wide range of solids concentrations (200 – 1000 mg/L)
- system "collapse" at 275 g/m³ per d
- process instability
- no improvement in fish performance with solids concentration