REARING CHANNEL CATFISH IN A BIOFLOC PRODUCTION SYSTEM

Aquaculture 2010 San Diego, CA

Bart Green

USDA Agricultural Research Service
Stuttgart National Aquaculture Research Center
Stuttgart, AR

Mixed Suspended-Growth System

• Phytoplankton, free & attached bacteria, aggregates of living and dead POM, and microbial grazers maintained in suspension

Algal Biosynthesis (Photoautotrophic)

$$106 \text{ CO}_2 + 16 \text{ NH}_4^+ 52 \text{ H}_2\text{O} + \text{PO}^{-3} \rightarrow \text{C}_{106}\text{H}_{152}\text{O}_{53}\text{N}_{16}\text{P} + 106 \text{ O}_2 + 16 \text{ H}^+$$

Bacterial Biosynthesis (Heterotrophic)

$$BOD_5 + NH_4^+ \rightarrow C_5H_7NO_2$$

Nitrification (Chemautotrophic)

$$2 NH_4^+ + 3 O_2 \rightarrow 2 NO_2^- + 4 H^+ + 4 H_2O$$

 $2 NO_2^- + O_2 \rightarrow 2 NO_3^-$

Denitrification (Heterotrophic)

$$5 C_6 H_{12} O_6 + 24 NO_3^- + 24 H^+ \rightarrow 30 CO_2 + 42 H_2 O + 12 N_2$$

Objectives

• Determine the effect of channel catfish stocking rate (Study 1) or initial biomass (Study 2) on production characteristics and water quality.

Experimental Units

- 9 HDPE-lined (18.6 m², 15.5 m³) tanks
- Continuous aeration
 - 1.865 kW regenerative blower per 3 tanks
- Evaporative losses replaced
- Maintained 100 mg/L Cl⁻
- NaHCO₃ added as needed to control pH

Stocking

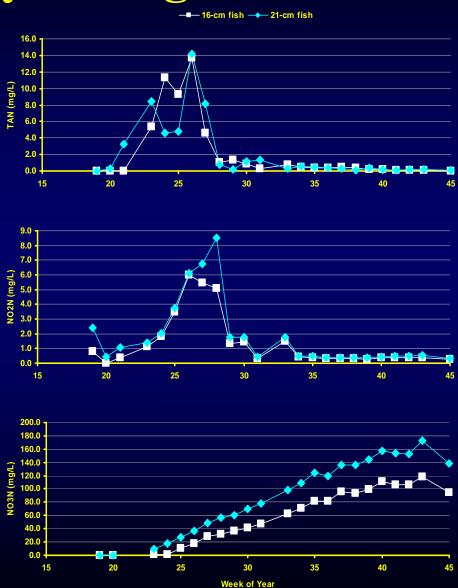
- Channel catfish
 - Study 1
 - NWAC 103 line, vaccinated against ESC
 - Stocked at 7.5, 12.5, 17.5 fish/m²
 - Mean weight: 47 g/fingerling
 - 138-d duration
 - Study 2
 - Stocked 16, 21, or 26-cm fingerlings
 - Initial biomass 0.43, 0.97, 1.91 kg/m³
 - 12.5 fish/m²
 - 201-d duration
- 32% protein floating feed


Water Quality Analyses

- TAN, NO₂-N, NO₃-N, SRP
 - Flow injection analysis
- Chlorophyll a
 - Chloroform-methanol extraction
- TSS, Settleable Solids
 - Standard methods
- DO, T, pH
 - Meters

Daily Feed Loading

	Mean Daily F	Cumulative Feed Burden		
Treatment	High Period (weeks)	Entire Experiment	(mg/L)	
7.5 fish/m ²	46.9 (33-43)	37.2 b	4,874 b	
12.5 fish/m ²	69.4 (33-43)	54.4 ab	7,131 ab	
17.5 fish/m ²	74.9 (33-43)	60.3 a	7,902 a	
16-cm fish	53.7 (27-40)	38.3 a	7,192 a	
21-cm fish	66.3 (27-40)	47.8 a	8,996 a	
29-cm fish	10.3 (27-40)	12.9 b	2,404 b	


Mean Nitrogen Concentrations

LS Means \pm SE

	NH ₄ -N	NO ₂ -N	NO ₃ -N
Treatment		(mg/L)	
7.5 fish/m ²	0.31 ± 0.12 a	$2.28 \pm 0.45 \text{ a}$	40.84 ± 5.08 a
12.5 fish/m ²	0.36 ± 0.12 a	$1.56 \pm 0.45 a$	61.61 ± 5.08 a
17.5 fish/m ²	0.45 ± 0.12 a	1.17 ± 0.45 a	$62.03 \pm 5.08 a$
16-cm fish	$1.37 \pm 0.12 \text{ a}$	$2.14 \pm 0.60 \text{ a}$	58.28 ± 12.64 a
TO-CIII IISII			
21-cm fish	1.78 ± 0.12 a	2.10 ± 0.60 a	89.04 ± 12.64 a

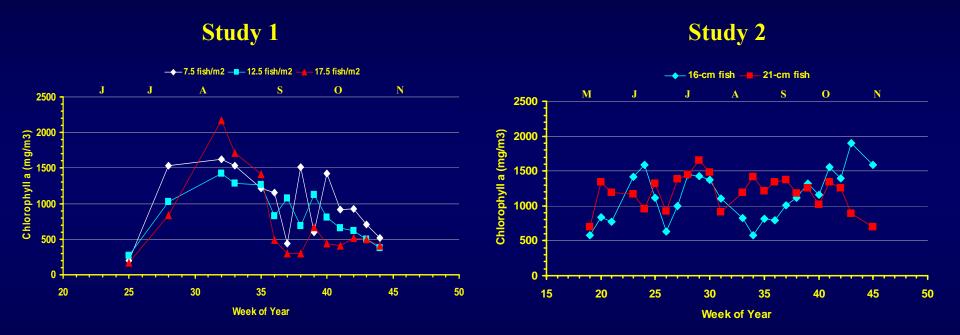
ab means within column within study followed by same letter do not differ significantly, P > 0.05.

Weekly Nitrogen Concentrations

Water Quality

LS Means \pm SE

	PO ₄ -P	Chlorophyll a	Settleable Sol	TSS
Treatment	(mg/L)	(mg/m^3)	(mL/L)	(mg/L)
7.5 fish/m ²	$12.2 \pm 1.5 a$	1,021.7 ± 99.8 a	$34.1 \pm 3.6 \text{ a}$	401.2 ± 26.9 a
12.5 fish/m ²	$16.9 \pm 1.5 \text{ ab}$	$851.9 \pm 99.8 a$	$43.0 \pm 3.6 \text{ a}$	439.4 ± 26.9 a
17.5 fish/m ²	$19.2 \pm 1.5 b$	$738.0 \pm 99.8 a$	$36.6 \pm 3.6 \text{ a}$	443.3 ± 26.9 a
16-cm fish	$15.3 \pm 2.4 \text{ a}$	1,139.9 ± 123.3 a	$35.1 \pm 5.7 \text{ a}$	$364.2 \pm 22.1 \text{ a}$
21-cm fish	$19.7 \pm 2.4 a$	1,194.5 ± 123.3 a	$38.3 \pm 5.7 \text{ a}$	411.9 ± 22.1 a


ab: means within column within study followed by same letter do not differ significantly, P > 0.05.

Water Quality Relationships

	TSS		C	FB
	Study 1	Study 2	Study 1	Study 2
TAN	+	++	+	++
NO ₂ N		+	-	+
NO ₃ N	++	++	++	++
Chlorophyll a	-			
pH			-	
Settleable solids	+	++	+	++
PO ₄ P	++	++	++	++
CFB	++	++		

-, +: $R^2 \le 0.33$ --, ++: $R^2 > 0.33$

Chlorophyll a

Production Data

	Yield			Average		
	Gross	Net	Net Daily	Weight	Survival	
Treatment	(kg/m ³)		$(g/m^3/d)$	(kg/fish)	(%)	FCR
7.5 fish/m ²	3.5 b	3.1 b	22.2 b	0.40 a	96.4 a	1.58 a
12.5 fish/m ²	5.2 a	4.4 ab	32.2 ab	0.36 a	96.3 a	1.57 a
17.5 fish/m ²	5.8 a	4.8 a	35.0 a	0.31 a	88.9 b	1.63 a
16-cm fish	5.2 a	4.7 a	23.6 a	0.39 a	89.1 a	1.52 a
21-cm fish	6.8 a	5.8 a	29.0 a	0.52 a	84.0 a	1.58 a

ab: means within column within study followed by same letter do not differ significantly, P > 0.05.

Summary

- Combined photoautotrophic -chemoautotrophic system
- Sustained high feed rates
 - CFB \rightarrow 10,000 mg/L, TSS < 700 mg/L
- High channel catfish productivity & survival
 - Net yield increased linearly as stocking rate increased from 7.5 – 17.5 fish/m²
 - No effect of initial biomass at rates tested
 - FCR not affected by stocking rate or initial biomass

Acknowledgement

- Thanks to George Huskey, Greg O'Neal, and SNARC coworkers for their assistance.
- Thanks to Cain Fish Farm & Hopper-Stephens Hatcheries for their assistance.
- The SRAC Innovative Technologies and Methodologies for Commercial-Scale Pond Aquaculture Project provided partial funding for Study 1.
- Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.