

PRODUCTION AND ECONOMIC COMPARISON OF L. vannamei RAISED IN BIOFLOC UNDER A FULL LIGHT GREENHOUSE ENVIRONMENT VERSUS INDOOR, LOW-LIGHT CONDITIONS IN AN INSULATED BUILDING.

Jeffrey F. Brunson, Edward DuRant, and John W. Leffler

South Carolina Department of Natural Resources James A. Waddell Mariculture Center Bluffton, South Carolina

Potential Benefits of Biofloc

- Reduced water use
- Greater biosecurity
- Reduced capitalization cost
- Flexibility in site selection

Potential Benefits of Indoor Production

- Reduced heating costs
 - Nov 11-Feb 5, 3142 gallons of propane-> \$6619
 - 29% of cost of production
- Greater control over photoautotrophic microbial community

Experimental System

Greenhouse System

- Steel framed, polyethylene film covering
- 30.5 m², EPDM lined raceways, 72 cm water depth
- Full natural lighting

Indoor System

- Steel "quonset" style building, insulated, unheated
- 6.1 m diameter, 29.2 m²
 fiberglass tanks, 75 cm depth
- Two 500 W halogen lights

Experimental System

- Both systems:
 - Zero exchange, no solids removal
 - Culture tanks seeded with established biofloc water
 - Air supplied by regenerative blowers and aluminum oxide airstones
 - Heat supplied by 6000 watt immersion heaters

Stocking

- Stocking date January 11, 2011
- Initial size, 1.87 g
- Stocked by weight
- 7120 shrimp/tank 324 shrimp/m³

Husbandry

- Fed Zeigler Shrimp Grower HI 35%, 3 times daily
- DO, temperature, salinity and pH measured twice daily
- NH3-N, NO2-N, NO3-N, PO4, alkalinity, turbidity, TSS, VSS, total chlorophyll and chlorophyll a weekly
- Sampled weekly up to week 5, and then biweekly thereafter.

Daily Water Quality

	T (°C)	DO	рН	Salinity
		(mg/L)		(ppt)
Light Treatment	24.46	3.59	6.54	25.36
Min				
	31.46	6.76	7.99	32.91
Max				
Mean	28.23	4.90	7.36	27.44
Dark Treatment	25.2	3.36	6.54	24.81
Min				
	29.65	6.61	7.99	32.75
Max				
Mean	28.33	4.97	7.35	27.09

Nitrogen Cycling

Solids

Photosynthetically Active Radiation (PAR) 400-700 nm

		Surface		66-cm depth	
Light	RW3	64.1 ± 9.5		0.00046 ± 0.00027	
	RW4	67.7 ± 7.8		0.00052 ± 0.00022	
	RW5	73.8 ± 7.8		0.00081 ± 0.00045	
	Mean		68.6 ± 8.7		0.00060 ± 0.00034
Dark	Tank 1	0.0132 ±.0037		0.00052 ± 0.00035	
	Tank 2	0.0199 ± .0048		0.00030 ± 0.00010	
	Tank 3	0.0025 ± .0004		0.00030 ± 0.00030	
	Mean		0.0119 ± 0.0081		0.00040 ± 0.00030

Chlorophyll

Respiration and GPP

Water Column Microbial Respiration and Photosynthetic Rate (mg O₂/L-hr) 4/14/2011

Production Parameters

	Survival	Mean Weight (g)	Production (kg/m³)	FCR
Light	77.0 ± 10.9 ^a	14.1 ± 0.3 ^b	3.33 ± 0.14 ^c	1.93 ± 0.1 ^d
Dark	73.2 ± 1.5 ^a	13.6 ± 1.2 ^b	3.36 ± 0.25 ^c	1.91 ± 0.17 ^d
Range	68.7 – 89.4	12.6 – 14.9	3.15 - 3.64	1.73 – 2.07

Mean ± SD

No significant differences in mean survival, harvest weight, production or FCR at P<0.05. Survival was significantly more variable in the dark treatment (P=0.019).

Shrimp Growth

Mean Size

Growth Rate
(g/week)
Light= 0.76 ± 0.02^a
Dark=0.73 ± 0.07^a
(mean ± SD)

Ranged from 1.3 to 0.35 g/week

Heating Costs

	Total kW-h	Heating	kW-h (m³) ⁻¹	Heating	Heating
		expense		expense	expense
		per tank		$(m^3)^{-1}$	(m³) ⁻¹ day ⁻¹
Light	8758.6	\$942	398.1	\$42.82	\$0.404
Dark	7977.8	\$858	362.6	\$39.00	\$0.368
Savings	780.8	\$84	35.5	\$3.82	\$0.036

(Electricity at \$0.1075/kW-h)

8.9% reduction in heating costs

Scaling Up

Commercial scale 235 m³ raceway (1400-1880 kg of production)

	Construction	Cost of 10 year
	cost	loan at 7%
Steel building (insulated)	\$38,601	\$53,783
Greenhouse	\$20,014	\$27,866
Difference	\$18,587	\$25,917

Heating savings in 235 m³ raceway

210 days X 0.036 = \$1777

Years to recoup extra owner investment

\$18,587/\$1777=10.5 years

Years to recoup extra investment with loan \$25,917/\$1777= 14.6 years

Additional Considerations

- Space may need to be conditioned to remove moisture
- Cooling in the summer
- Improved oxygen delivery
- Greater lighting efficiency to reduce cost and improve working conditions
- Greenhouse plastic must be replaced

Conclusion

- Water quality parameters were remarkably similar among all tanks from both treatments.
- No differences in suspended microbial respiration rates among all six tanks, but photosynthetic rates were significantly higher in the "light" systems than in the "dark" tanks.
- No differences between the greenhouse-based "light" systems and the building-based "dark" systems with regard to mean growth rate, harvest size, total production, survival, or FCR, although survival was significantly more variable in the dark treatment.
- Production, with respect to survival, did not appear to be more stable, or consistent, in the absence of algae.
- Heating costs were reduced by 8.9% with production in an insulated building.
- Improved engineering could further reduce heating costs. This will be necessary to offset increased cost of construction.

Thank You

Why such poor growth?

Mean Individual Weight Gain by [NO₃-N] Level

Growth in Dark Tanks

Multiple Linear Regression growth rate = -6.372 + (0.996 * mean ph) - (0.000518 * TSS)Adj $R^2 = 0.471$, P < 0.001