

United States Department of Agriculture National Institute of Food and Agriculture

Effect of Solids Removal on Production of Pacific White neworleans 2011 p Litopenaeus

vannamei in a

nal Exchange, Biofloc-pasca System

Jeff Brunson*, Jason Haveman, Edward DuRant, Daryl Weldon, and John Leffler

South Carolina Department of Natural Resources James A. Waddell Mariculture Center Bluffton, South Carolina

Solids in Biofloc Systems

- Potential benefits
 - Reduced water use
 - Greater biosecurity
 - Reduced capitalization cost
 - Flexibility in site selection

- Cyanobacteria
- Bacteria density
- Rate of nitrate accumulation
- **Increased** primary production
- Shrimp growth?

Experimental System

- Fifteen (15) plastic tanks fitted with vinyl pool liners.
- Tank Volume = 6.2 m³ at an average depth of 70 cm.
- Air supplied by a regenerative blower.

- Conical bottom settling chambers.
- Airlift driven, 5.1-6.2 L/min
- 15 L of sludge removed weekly

Experimental Design

- Five treatments, in triplicate:
 - TRT A "Control"- Continuously unsettled
 - Airstone in settling chamber
 - TRT B Settled 10 hours/week
 - TRT C Settled 50 hours/week
 - TRT D Settled 150 hours/week
 - TRT E Settled 168 hours/week, with 250 μ mesh bag on return pipe.

Stocking

- All tanks "seeded" with established biofloc- rich water
- Stocking Date June 8, 2010
- Initial Weight- 1.89 g
- 1000 shrimp/tank ————— 145 shrimp/m³

Early Problems

- Mortality June 15-22 (beginning one week after stocking)
- Dead shrimp removed twice per day.
- Losses from o-188 shrimp
- Daily measurements uniform
- No correlation with NH3-N or solids level.
- No treatment effect detected
- Shrimp redistributed

Daily Water Quality

- Temperature 23.9-32.8 ° C
 - Cold snap around July 4th
- pH 7.1-8.9
- Dissolved oxygen ≥ 4.3 mg/L
- Salinity 20.3-25.8 ppt

Solids Throughout Study

Solids in Last 5 Weeks

Treatment Effect on Nitrogen Cycling

Treatment Effect on Algal Community

Shrimp Growth

Treatment	Growth Rate
o hours	1.46 ± 0.16 a
10 hours	1.39 ± 0.24 ^a
50 hours	1.80 ± 0.23 a
150 hours	1.33 ± 0.20 ^a
168 hours w/ bag	1.61 ± 0.19 ^a

Means with the same superscript are not significantly different at P<0.05.

Mean Individual Shrimp Weight

Treatment	Mean Shrimp Weight	
	(g)	
o hours	18.0 ± 1.8 ^a	
10 hours	17.2 ± 2.7 ^a	
50 hours	21.7 ± 2.5 ^a	
150 hours	16.5 ± 2.2ª	
168 hours w/ bag	19.6 ± 2.1 ^a	

Means with the same superscript are not significantly different at P<0.05.

Linear regression shows no significant relationship between level of solids and individual shrimp weight.

Individual Weight at Harvest Predicted by Survival Rate

Survival

Treatment	Percent Survival	
o hours	44.0 ± 7.55 ^b	
10 hours	67.7 ± 17.90 ^{a b}	
50 hours	41.5 ± 4.95 ^b	
150 hours	76.3 ± 9.07 ^a	
168 hours w/	60.0 ± 9.54 ^{ab}	
bag		

Means with the same superscript are not significantly different at P<0.05.

Simple Linear Regression shows:
- no significant relationship
between

survival and NH3-N or NO2-N;

- no significant relationship between

survival and solids measures
(@P<0.05)! Predicted by Initial Mortality Event

Mean Harvest Weight per Tank

Treatment	Mean Harvest	kg/m³
	Weight (kg)	
o hours	7.23 ± 1.96 ^b	1.16
10 hours	10.17 ± 1.37 ^{ab}	1.64
50 hours	8.05 ± 0.07 ^{ab}	1.30
150 hours	11.23 ± 0.23 ^a	1.81
168 hours w/ bag	10.47 ± 0.67 ^a	1.69

Means with the same superscript are not significantly different at P<0.05.

Effect of NO₂-N on Production

Total Production Predicted by Mean NO2-N

Simple Linear Regression: Higher NO2-N leads to lower shrimp production.

P=0.001, Adj Rsqr = 0.566

Production Predicted by Solids Level

Shrimp Production Predicted by TSS

P<0.001 Adj. R²=0.515

Shrimp Production Predicted by VSS

P<0.001 Adj. R²=0.621

> P=0.007 Adj. R²=0.421

Shrimp Production Predicted by Total Chlorophyll

FCR

Treatment	FCR	
o hours	1.91 ± 0.48 a	
10 hours	1.31 ± 0.17 ^{ab}	
50 hours	1.63 ± 0.00 ab	
150 hours	1.17 ± 0.03 ^b	
168 hours w/ bag	1.26 ± 0.08 ^{ab}	

Means with the same superscript are not significantly different at P<0.05.

FCR Predicted by Solids Level

FCR Predicted by VSS

Imhoff: P=0.011, Adj. R²=0.383

TSS: P=0.001, Adj. $R^2=0.558$

Conclusions

- The initial mortality event reduced survival.
- Chlorophyll levels increased with increasing solids; much of the solids was algae. Production decreased with increasing total chlorophyll.
- Total production was negatively influenced by mean NO2-N.
- Solids level did not affect growth rate or mean harvest weight.
 The effect on survival is unclear.
- Systems with lower solids levels had higher total production and lower FCR.