INFLUENCE OF HYDROGEN PEROXIDE ON Litopenaeus vannamei REARED IN BIOFLOCS TECHNOLOGY SYSTEMS

Wilson Wasielesky; Plinio S. Furtado, Gabriel F. Alves, <u>Dariano</u>

<u>Krummenauer*</u> and Luís Poersch

Introduction

- In BFT system the oxygen demand is high, mainly due to the respiration of microorganisms present in the bioflocs and the high stocking densities of shrimp.
- Cuts of oxygen supply in the BFT system (electrical problems or equipment breaks), can lead to total mortality of shrimp in a short time.

Objective

This study aimed to investigate the feasibility of use of the hydrogen peroxide as a source of rapid increase of the dissolved oxygen concentration levels (DO) in BFT system.

BFT SYSTEM

- 21 day-trial was conducted in six 300 L tank-BFT-system
- 100% of mature biofloc;
- L. vannamei juveniles (1.3 g) where 300 juveniles.m⁻³ stocked;

Treatments:

(T1) control, constant aeration during experimental period (aerotube + blower)

(T2) 21 days - hydrogen peroxide permanent
 (which was simulated in a permanent culture with oxygen supplied through regular additions of hydrogen peroxide

(Pump to eliminate CO2 and mix the water!!!!).

The amount of hydrogen peroxide used was 1 mL (29%-liquid), to increase DO level in 0.85 mg/L in 150 L of tank water. Monitoring oxygen every 3 hours (14 μLH₂O₂(safe level);

• 14 μLH_2O_2 (safe level);

Aquacult Int DOI 10.1007/s10499-013-9694-x

Short communication: Acute toxicity of hydrogen peroxide in juvenile white shrimp *Litopenaeus vannamei* reared in biofloc technology systems

Plínio S. Furtado · Fabiane P. Serra · Luis H. Poersch · Wilson Wasielesky Jr.

Water Quality Parameters:

- Temperature
- pH
- Oxygen
- Salinity
- Ammonia
- Nitrite

Alkalinity

Nitrate

Volume of floc

Daily

Twice a week

- Shrimp were fed two times/day with a commercial diet (38% CP (38% CP, 1.6 mm, Guabi™, Campinas, SP, Brazil) offered in feed trays.
- Daily feed was adjusted based on shrimp consumption and growth performance.
- At the end of experiment the remaining shrimp in each tank were weighed, using a digital scale and counted to determine the survival rate and growth each treatment.

- The physical, chemical and biological water parameters monitored throughout the study remained in the range considered adequate for the development of L. vannamei.
- It was observed a decrease in pH levels between treatments (p<0.05).
- The ammonia concentrations were higher in treatment T2 than in T1 (p <0.05).
- Nitrite was significantly higher in T1 compared to T2 which showed a gradual decrease of concentrations of this compound along the experiment.

Table 1. Mean values ± standard deviation of the water quality parameters during culture (21 days) of *L. vannamei* analyzing the effect of hydrogen peroxide.

	T1-Control	$T2-H_2O_2$
TA-N (mg L ⁻¹)	0.18 ± 0.38^{a}	0.63 ± 1.03^{b}
NO_2 -N (mg L ⁻¹)	14.29 ± 5.13^{a}	2.76 ± 1.79^{b}
NO_3 -N (mg L ⁻¹)	ND	ND
Alkalinity (mg L ⁻¹)	$142.08 \pm 10.9^{\mathrm{a}}$	163.75 ± 11.2^{b}
MFV (ml L ⁻¹)	$60.82 \pm 37.53^{\mathrm{a}}$	37.14 ± 20.1^{b}
DO (mg L ⁻¹)	$6.18 \pm 0.49^{\mathrm{a}}$	$6.48 \pm 2.67^{\mathrm{b}}$
Salinity	33.5 ± 0.5	33.3 ± 0.50
Temperature (°C)	28.40 ± 2.39	29.21 ± 2.28

The data correspond to the mean of 3 replicates \pm standard deviation. Different superscripts in the same row indicate that the means, significantly, differ (P<0.05).

- The physical, chemical and biological water parameters monitored throughout the study remained in the range considered adequate for the development of L. vannamei.
- It was observed a decrease in pH levels between treatments (p<0.05).
- The ammonia concentrations were higher in treatment T2 than in T1 (p <0.05).
- Nitrite was significantly higher in T1 compared to T2 which showed a gradual decrease of concentrations of this compound along the experiment.

Table 1. Mean values ± standard deviation of the water quality parameters during culture (21 days) of *L. vannamei* analyzing the effect of hydrogen peroxide.

	T1-Control	$T2-H_2O_2$
TA-N (mg L ⁻¹)	0.18 ± 0.38^{a}	0.63 ± 1.03^{b}
NO_2 -N (mg L ⁻¹)	14.29 ± 5.13^{a}	2.76 ± 1.79^{b}
NO_3 -N (mg L ⁻¹)	ND	ND
Alkalinity (mg L ⁻¹)	$142.08 \pm 10.9^{\mathrm{a}}$	163.75 ± 11.2^{b}
MFV (ml L ⁻¹)	$60.82 \pm 37.53^{\mathrm{a}}$	37.14 ± 20.1^{b}
рН	$7.97 \pm 0.10^{ m a}$	7.12 ± 0.17^{b}
DO (mg L ⁻¹)	$6.18 \pm 0.49^{\mathrm{a}}$	$6.48 \pm 2.67^{\mathrm{b}}$
Salinity	33.5 ± 0.5	33.3 ± 0.50
Temperature (°C)	28.40 ± 2.39	29.21 ± 2.28

The data correspond to the mean of 3 replicates \pm standard deviation. Different superscripts in the same row indicate that the means, significantly, differ (P<0.05).

- The physical, chemical and biological water parameters monitored throughout the study remained in the range considered adequate for the development of L. vannamei.
- It was observed a decrease in pH levels between treatments (p<0.05).
- The ammonia concentrations were higher in treatment T2 than in T1 (p <0.05).
- Nitrite was significantly higher in T1 compared to T2 which showed a gradual decrease of concentrations of this compound along the experiment.

Figure 1. Mean values \pm standard deviation of the levels nitrite (N-NO₂-) during culture (21 days) of *L. vannamei* analyzing the effect of hydrogen peroxide.

Table 2. Mean values \pm standard deviation of the performance parameters during culture (21 days) of *L. vannamei* analyzing the effect of hydrogen peroxide.

	T1-Control	T2-H ₂ O ₂
Initial weight (g)	1.33±0.39	1.33±0.39
Final weight (g)	3.03 ± 0.51	
WGR (g)	0.55 ± 0.12	0.51±0.16
Survival (%)	91.13±4.07	93.61±6.67

Conclusions

The results from this study suggest that the use of hydrogen peroxide as alternative systems for emergency supply of dissolved oxygen, it is possible for the rearing of *Litopenaeus vannamei* in BFT system.

ACKNOWLEDGMENTS

darianok@gmail.com